3D Geotechnical Finite Element Software
Contact us:
TEL: +086-010-50951355 / FAX:+86-010-50951352
Email : cathy@souvr.com / Frank@souvr.com / Robin@souvr.com / sales@souvr.com
Details
Related
Consulting
※Product Overview※
3D Geotechnical Finite Element Software
Perform three-dimensional analysis of deformation and stability in geotechnical engineering and rock mechanics with PLAXIS 3D. Whether you are working on projects that are simple or complex, or you are working on excavations, embankments, and foundations or tunneling, mining, and reservoir geomechanics, this finite element package has what you need. Engineering companies and institutions in the civil and geotechnical engineering industry count on PLAXIS 3D's range of CAD-like drawing capabilities and extrude, intersect, combine, and array operations.
CAPABILITIES
Analyze results with post-processing
Leverage powerful and versatile post-processing and display forces, displacements, stresses, and flow data in contour, vector, and iso-surface plots in various ways. Cross-section capabilities allow for a more detailed analysis of the results. Data can be copied from tables or via Python-based scripting for further processing purposes outside of PLAXIS. The Curve manager enables graph creation, plotting various types of results from available calculation data.
Assess stresses and displacements
Accurately model the construction process by activating and deactivating soil clusters and structural elements in each calculation phase with staged construction. With plastic, consolidation and safety analysis calculation types, a broad range of geotechnical problems can be analyzed. Constitutive models range from simple linear to advanced highly nonlinear models through which soil and rock behavior can be simulated. Well proven and robust calculation procedures ensure converging calculations and accurate results.
Create finite element models
Efficiently create models with a logical geotechnical workflow. Define everything from complex soil profiles or geological cross-sections to structural elements, such as piles, anchors, geotextiles, and prescribed loads and displacements. Import geometry from CAD-files. Automatically mesh to create a finite element mesh almost immediately.
Dynamic with consolidation calculation type
Simulate the coupling between soil deformations and transient seepage in the dynamic loading phase. Using this new, advanced calculation type offers generally improved stress predictions and accounts for both eventualities of accumulation and dissipation of excess pore pressures during earthquakes.
Field stress per cluster
The field stress initial calculation type allows for direct specification of in situ stress conditions on a volume of soil. It is now possible to assign a different field stress property to individual soil volumes and borehole layers, allowing you to independently input the initial stress state by magnitude and orientation for each of those clusters. The cluster-based field stress complements the global field stress and makes it easier to define the in-situ stress for geological models. This allows easily modeling non-uniform deepground conditions, such as those encountered in deep tunneling or reservoir geomechanics.
Girder definition in tunnel designer
Tunnels are often reinforced with transverse ribs, which can now be modeled as curved beam elements located at specific intervals in the 3D tunnel designer. The option to add transverse girders, together with plate and volume lining, rockbolts, and umbrella arches, enables modeling complex tunnel reinforcement systems. Girders are a natural component in the slicing and sequencing features of the tunnel designer, enabling you to define the entire construction sequence.
Line pass / Cross section curves
Create cross-section curveplots from any arbitrary line cross section, structural element, or centerline generated from the structural forces in volume piles capability. It allows you to create a single curveplot to compare how the settlements at the surface level evolve for multiple phases, or to compare the bending moment along the length of a diaphragm wall or tunnel lining (either modeled as plates or volume elements) across multiple phases simultaneously.
Loft polycurves and blend surfaces
Both these features can be used to provide smooth transitions between non-homogeneous sections. The blend surfaces feature generates a continuous surface that joins a set of other surfaces by filling the voids between them. The loft polycurves command fits a surface to a set of polycurves, such as turning a series of spatially located 2D cross-sections into a consistent 3D geometry.
NURBS curves
Use NURBS curves to model arbitrary shapes in 3D. NURBS curves are automatically generated from a series of successive points. These curves and polycurves can be combined to generate almost any geometry. NURBS curves can also be specified as extrusion paths, which enables the generation of curved linear elements with uniform cross section. For example, a cross section that is defined by a polygon or polycurve can be extruded along the trajectory defined by a NURBS curve.
Scripting reference manual as a Jupyter notebook
Easily learn Python-based remote scripting in PLAXIS with the new scripting reference manual. Sample scripts for each of the commands in PLAXIS are offered in a Jupyter notebook. These samples can be run live in the software to see and understand what happens. You can also edit and rerun the samples and see the effect of your changes, offering a great way of learning-by-doing.